- 01
- 02
- 03
- 04
- 05
- 06
- 07
- 08
- 09
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
Let's count a number of rules that can be built in GoL-like automatas. Rule is the matrix that maps some condition of cells to new state.
Cell itself could be alive or dead. And cell could have 0-8 neighbors. So, there are 2^(2*9) = 262144 different rules. Well known, that
the majority of them are primitive and produces some pure pattern or just dies in finite number of generations / infinitely fills the world
with alive cells. We also know that some rules are symmetric to each other as if we just rename (swap colors of) alive and dead cells.
Conway found the most interesting rule from entropy point of view.
2^18 is not so much. Let's take a look at 2D automata known as Rule 110. State 100 keeps cell dead:
100 -> 0
While state 001 makes cell alive:
001 -> 1
In terms of neighborhood, this two rules are indifferent: both means one live neighbor next to dead cell. But in Rule 110 not only a /number/
of neighbors is meaningful, but the /position/ of separate neighbor.
Let's imagine the GoL-like rule with the same property: we will look not only at number of neighbors, but at their position. What if to have one
neighbor at north-west gives not the same result as if neighbor were at south-east.
This change gives us much more different rules. If each neighbor is meaningful, then we have 2 ^ 8 different states of neighborhood, and cell
could be still alive or dead. If I'm not wrong there must be 2 ^ (2 * (2 ^ 8)) = 2 ^ 512 different rules.
Obviously, this space includes Conway's Game of Life and all different rules from that 262144, and gives billions of new ones. Obviously,
the majority of them are trivial too. But there may be some interesting entropy-like rules different from the Conway's one.
This space is too huge to be discovered manually, and even with bruteforce algorithms too. But evolution algorithms could be used to find rules
with some special properties.
So, I have two questions:
1) Does this space has a given name, anybody researched that?
2) I will be glad to hear any ideas on how to make this space simpler by excluding symmetric states etc. to save the time for discovering.
vistefan 20.10.2021 02:59 # 0
vistefan 20.10.2021 14:28 # 0
ObeseYoung 20.10.2021 06:48 # +1
Bastards!
Steve_Brown 20.10.2021 14:09 # +3
Наверное, у него было слишком много соседей.
j123123 20.10.2021 16:14 # +1
guest6 20.10.2021 17:11 # 0
guest6 20.10.2021 17:21 # 0
guest6 20.10.2021 17:25 # 0
guest6 20.10.2021 17:58 # 0
Не отвечай мне
guest6 20.10.2021 17:59 # 0
guest6 20.10.2021 18:10 # 0
guest6 20.10.2021 18:18 # 0
guest6 20.10.2021 18:21 # 0
https://vladikavkaz.superjob.ru/resume/programmist-delphi.html
guest6 20.10.2021 18:31 # 0
guest6 20.10.2021 18:41 # 0